Accelerated phase contrast imaging using compressed sensing with complex difference sparsity

نویسندگان

  • Yongjun Kwak
  • Seunghoon Nam
  • Kraig V Kissinger
  • Beth Goddu
  • Lois A Goepfert
  • Warren J Manning
  • Vahid Tarokh
  • Reza Nezafat
چکیده

Methods Figure 1 shows the proposed CS reconstruction with CD sparsity for phase contrast MR. The objective function J = ‖FΩmi-yi‖2+l‖Ψmi‖1‖+lCD‖m1-m2‖1, where mi=1,2 are the two bipolar encoding acquisitions and |m1-m2| is the corresponding CD image, is used in the reconstruction. The reconstruction performs iteratively between two bipolar images. Every iteration, the recon of m1 makes the intermediate image of m1 and pass it to the recon of m2, which uses it for calculating CD image and makes the intermediate image of m2 and pass it back to the recon of m1. To evaluate the proposed method, phase contrast images were acquired using an axial slice of ascending aorta at the level of the bifurcation of the pulmonary artery. A retrospectively ECG-gated flowencoded 2D PC MRI pulse sequence was used with typical parameters of: FOV= 320×320 mm, resolution = 2.5ms x 2.5 ms, slice thickness = 6mm, TR/TE=15/ 6.5ms, flip angle= 30°, temporal resolution = 30ms, VENC = 300 cm/s. The under-sampling was performed retrospectively from a fully sampled data using a Gaussian random under-sampling for rates of 3 and 5. In an IRB approved study, 14 healthy adult subjects (5 males, 17-70 years) were recruited. Reconstructed images were compared with fully-sampled acquisition and CS without CD sparsity (i.e. lCD= 0).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated aortic flow assessment with compressed sensing with and without use of the sparsity of the complex difference image.

Phase contrast (PC) cardiac MR is widely used for the clinical assessment of blood flow in cardiovascular disease. One of the challenges of PC cardiac MR is the long scan time which limits both spatial and temporal resolution. Compressed sensing reconstruction with accelerated PC acquisitions is a promising technique to increase the scan efficiency. In this study, we sought to use the sparsity ...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Deformation Corrected Compressed Sensing (DC-CS): A Novel Framework for Accelerated Dynamic MRI

We propose a novel deformation corrected compressed sensing (DC-CS) framework to recover contrast enhanced dynamic magnetic resonance images from undersampled measurements. We introduce a formulation that is capable of handling a wide class of sparsity/compactness priors on the deformation corrected dynamic signal. In this work, we consider example compactness priors such as sparsity in tempora...

متن کامل

Highly-Accelerated First-Pass Cardiac Perfusion MRI Using Compressed Sensing and Parallel Imaging

INTRODUCTION: First-pass cardiac perfusion MRI is a promising modality for the assessment of coronary artery disease. Recently developed dynamic parallel imaging techniques, such as k-t SENSE [1] and k-t GRAPPA [2], can be used to perform up to 10-fold accelerated perfusion imaging by exploiting the difference in coil sensitivities and spatio-temporal correlations. Such techniques can be used t...

متن کامل

Prospectively accelerated first-pass myocardial perfusion imaging in patients using motion-compensated compressed sensing exploiting regional low-rank sparsity

Background First-pass perfusion CMR utilizes accelerated imaging to achieve high spatial resolution and coverage within a small acquisition window. Several compressed sensing (CS) methods have been proposed to accelerate perfusion imaging. However, patient motion due to imperfect breathholding and other factors leads to degraded quality of CS-reconstructed images. We recently demonstrated a CS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2012